goldfisio.blogspot.com,Popunder_1,16526066,"" goldfisio: setembro 2023

anuncio

anuncio

substancias hormonais que inibe as dores

    Há muito tempo a trás, foi descoberto que a injeção de diminutas quantidades de morfina, tanto no núcleo periventricular, ao redor do terceiro ventrículo, quanto na substância cinzenta periaquedutal do tronco cerebral, causa grau extremo de analgesia, estudos subsequentes, observou-se que agentes semelhantes à morfina, principalmente os opioides, também atuam em vários outros pontos do sistema da analgesia, incluindo os cornos dorsais da medula espinhal, muitos fármacos que alteram a excitabilidade dos neurônios o fazem pela ação sobre os receptores sinápticos, foi considerado que os “receptores para morfina” do sistema da analgesia deveriam ser os receptores para algum tipo de neurotransmissor semelhante à morfina que fosse naturalmente secretado pelo sistema nervoso. Portanto, extensa pesquisa foi realizada à procura do opioide natural do sistema nervoso.

   Aproximadamente, uma dúzia dessas substâncias opioides é encontrada em diferentes pontos do sistema nervoso; todas elas são produtos da degradação de três grandes moléculas proteicas: pró-opiomelanocortina, proencefalina e prodinorfina entre as mais importantes dessas substâncias opioides estão a fd-endorfina, a metencefalina, a leuencefalina e a dinorfma as duas encefalinas são encontradas no tronco cerebral e na medula espinhal, nas porções do sistema da analgesia descrito acima, e a endorfina está presente tanto no hipotálamo como na hipófise, a dinorfina se encontra principalmente nas mesmas regiões em que ocorrem as encefalinas, mas em quantidades muito menores.

     Assim, apesar de os detalhes sutis do sistema opioide do cérebro ainda não serem compreendidos, a ativação do sistema da analgesia, pelos sinais neurais que entram na substância cinzenta periaquedutal e na área periventricular, ou a inativação das vias da dor por fármacos semelhantes à morfina podem suprimir, quase que totalmente, muitos sinais dolorosos provenientes dos nervos periféricos,  há outros evento importante na saga do controle da dor foi a descoberta de que a estimulação das grandes fibras sensoriais do tipo AP originada nos receptores táteis periféricos pode reduzir a transmissão dos sinais da dor originados da mesma área corporal. Isso presumivelmente resulta da inibição lateral local na medula espinhal. Esse fato explica porque manobras simples, como a massagem da pele próxima às áreas dolorosas, em geral, são eficazes no alívio da dor. E, com muita probabilidade, também explica porque linimen- tos geralmente são utilizados para aliviar a dor.

     Esse mecanismo e a excitação psicogênica simultânea do sistema da analgesia central provavelmente também são a base do alívio da dor obtido pela acupuntura, vários procedimentos clínicos foram desenvolvidos alguns  estimuladores são colocados em áreas selecionadas da pele ou, ocasionalmente, implantados sobre a medula espinhal, supostos estimulantes das colunas sensoriais dorsais. Em alguns pacientes, eletródios podem ser colocados, estereotaxicamente, em núcleos intralaminares do tálamo apropriados ou nas áreas periventricular ou periaquedutal do diencéfalo. O paciente pode controlar pessoalmente o grau de estimulação. Alívio enorme já foi registrado em alguns casos. Além disso, foi registrado que o alívio da dor pode durar até 24 horas, após somente alguns minutos de estímulo

paredes das pequenas arteríolas

        O número de capilares sanguíneos no cérebro é maior onde as demandas metabólicas são maiores a intensidade metabólica total da substância cinzenta cerebral, onde ficam os corpos celulares dos neurônios, é cerca de quatro vezes maior do que a da substância branca; de forma correspondente, o número de capilares e a intensidade do fluxo sanguíneo também são cerca de quatro vezes mais altos.     característica importante estrutural dos capilares cerebrais é que em sua maioria eles são muito menos “permeáveis” do que os capilares sanguíneos em quase qualquer outro tecido do corpo. 

       A razão para isso é que os capilares são sustentados de todos os lados pelos “pés gliais”, pequenas projeções das células gliais que ficam ao seu redor, estendendo-se por toda a superfície das capilares, e responsáveis pelo suporte físico para impedir dilatação exagerada dos capilares no caso de pressão sanguínea alta no seu interior. 

       As paredes das pequenas arteríolas que levam aos capilares cerebrais ficam muito mais grossas em pessoas que desenvolvem hipertensão, e essas arteríolas permanecem no estado de considerável vasoconstrição o tempo todo para impedir a transmissão da pressão alta aos capilares, veremos adiante, neste capítulo, que cada vez que esses sistemas de proteção contra a transudação de líquido dos capilares para o tecido cerebral deixam de funcionar, segue-se edema cerebral grave, o que pode levar rapidamente ao coma e à morte, quase todas as pessoas idosas têm bloqueios de algumas pequenas artérias cerebrais, e até 10% delas eventualmente chegam a ter bloqueios sérios o suficiente para causar perturbação grave da função cerebral, condição chamada de “acidente vascular cerebral.

     A maioria dos acidentes vasculares cerebrais é causada por placas arterioscleróticas que ocorrem em uma ou mais das artérias cerebrais. Essas placas podem ativar o mecanismo de coagulação do sangue, e o coágulo que surge bloqueia o fluxo sanguíneo na artéria, levando assim à perda aguda da função cerebral em área localizada.

tipos de fibra do músculo esquelético

     O músculo esquelético são compostos inumeras inzimas também anda demonstrando que todos esses músculos são compostos por numerosas fibras, com diâmetro de 10 a 80 micrômetros onde  cada uma dessas fibras é formada por subunidades sucessivamente ainda menores a maioria dos músculos esqueléticos, cada fibra se prolonga por todo o comprimento do músculo; Exceto por 2% das fibras, cada uma em geral é inervada por apenas uma terminação nervosa, situada perto do meio da fibra onde a membrana delgada que reveste a fibra Muscular Esquelética chamada sarcolema que consiste de verdadeira membrana celular, chamada membrana plasmática, e com revestimento de fina camada de material polissacarídeo contendo muitas fibrilas colágenas delgadas.

      Em cada extremidade da fibra muscular, essa camada superficial do sarcolema funde-se com uma fibra do tendão. A fibra do tendão, por sua vez, se agrupa em feixes para formar os tendões dos músculos que se inserem nos ossos já as miofiblilas São Compostas por Filamentos de Actina e de Miosina, lembro que cada fibra muscular contém centenas a milhares de miofibrilas, demonstradas pelos pequenos é composta por cerca de 1.500 filamentos de miosina adjacentes e por 3.000 filamentos de actina, longas moléculas de proteínas polimeriza- das responsáveis pelas contrações reais musculares os filamentos mais espessos nesse diagrama são miosina, e os filamentos mais finos são actina  filamentos de miosina e actina estão parcialmente interdigitados, fazendo com que a miofibrila alterne faixas escuras e claras.

    As faixas claras só contêm filamentos de actina, sendo conhecidas como faixas I, por serem isotrópicas à luz polarizada. As faixas escuras contêm filamentos de miosina, assim como as extremidades dos filamentos de actina, onde se superpõem aos de miosina, sendo chamadas de faixas A, por serem anisotrópicas à luz polarizada, essas  pontes se cruzam  são as interações entre os filamentos de actina e são elas  as pontes cruzadas que causam as contrações, os filamentos de actina estão ligadas ao chamado disco Z. Desse disco, esses filamentos se estendem em ambas as direções para se interdigitarem com os filamentos de miosina. 

    O disco Z composto por proteína filmentosa diferente dos filamentos de actina e miosina cruza transversalmente toda a miofibrila e igualmente de forma transversa de miofibrila para miofibrila, conectando as miofibrilas umas às outras, por toda fibra muscular. Por essa razão, a fibra muscular, em sua espessura, apresenta faixas claras e escuras, como o fazem as miofibrilas individuais. Essas faixas dão aos músculos esqueléticos e cardíacos sua aparência estriada.

    O segmento da miofibrila (ou de toda a fibra muscular) situado entre dois discos Z sucessivos é referido como sarcômero. quando a fibra muscular está contraída o comprimento do sarcômero é de cerca de 2 micrômetros, nesse comprimento, os filamentos de actina se sobrepõem completamente aos filamentos de miosina, e as pontas dos filamentos de actina estão quase começando a se sobrepor. Será visto adiante que nesse comprimento o músculo é capaz de gerar sua força máxima de contração

Filamentos De Miosina

    Segundo o tratado de fisiologia medica os  filamentos de miosina no qual são compostos por múltiplas moléculas de miosina. Cada uma das moléculas de miosina, tem peso molecular em torno de 480.000.Existe  a disposição de muitas moléculas para formar os filamentos de miosina, bem como a interação desses filamentos com um dos lados das extremidades de dois filamentos de actina, as moleculas de miosina é composta por seis cadeias polipeptídicas duas cadeias pesadas cada uma com peso molecular em torno de 200.000, e quatro cadeias leves , com peso molecular em torno de 20.000 cada.

      As duas cadeias pesadas se espiralam uma com a outra, para formar dupla hélice, chamada cauda ou haste da molécula de miosina. Uma ponta de cada uma dessas cadeias é dobrada para um dos lados, formando a estrutura polipeptídica globular chamada cabeça da miosina. Assim, existem duas cabeças livres na extremidade livre da molécula de miosina de dupla hélice, as quatro cadeias leves também fazem parte da cabeça da miosina, duas para cada cabeça. Essas cadeias leves ajudam a regular o funcionamento da cabeça durante a contração muscular, as enzima A TPase. Como explicado adiante, essa propriedade permite que a cabeça clive o ATP e utilize a energia derivada das ligações de alta energia do fosfato do ATP para energizar o processo de contração.


     Os Filamentos de Actina São Compostos por actina, tropomiosina e troponina, a viga mestra do filamento de actina é o filamento duplo e de duas moléculas de proteína F actina,  esses dois filamentos se enroscam, em forma de hélice, de modo semelhante ao que ocorre com as moléculas de miosina, cada filamento em dupla hélice da actina F é composto por moléculas de actina G polimerizadas, cada uma com peso molecular em torno de 42.000. Ligada a cada molécula de actina G existe uma molécula de ADP. Acredita-se que essas moléculas de ADP sejam os locais ativos, nos filamentos de actina com as quais interagem as pontes cruzadas dos filamentos de miosina para produzir a contração muscular. Os locais ativos nos dois filamentos na dupla hélice de actina F são alternados, fazendo com que por todo o filamento de actina exista um local ativo a cada 2,7 nanômetros.

bom deixando claro que cada filamento de actina tem comprimento em torno de 1 micrômetro. A base dos filamentos de actina está fortemente inserida nos discos Z; as extremidades dos filamentos projetam-se em ambas as direções para ficarem nos espaços entre as moléculas de miosina.

anuncio

Postagem em destaque

Maca dobrável portátil para home Care ou consultório

Está maca maleta está disponível no mercado livre em seis cores diferentes para agradar os diversos tipos de gostos, a maca possui pés de al...

Anúncio

anuncio

https://www.videosprofitnetwork.com/watch.xml?key=11f90dc865dcda39d919ec27ff5ed384